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Abstract—We consider the bin-picking problem where a robot
picks an object with a parallel gripper from randomly piled-
up objects inside a bin until the bin is empty. The learning-
based methods have been the most prominent methods to
tackle this challenge. Many of the previous works focus on
4-DoF grasp where the robot can only approach the object
vertically. While these methods work well for small objects, their
performance suffers dramatically when dealing with wide objects
as shown by our experiments. Several works utilize 6D object’s
pose estimation algorithms to achieve 6-DoF grasp. However,
obtaining a precise 6D object’s pose under cluttered scenes
is computationally expensive, and many of these methods are
limited to simple-shaped objects. We propose an efficient method
to estimate 6-DoF grasp utilizing a single convolutional neural
network (CNN). Our proposed method does not estimate the 6D
object’s pose. Instead, we introduce a novel way to represent
the grasp approaching direction in the form of 2D images. Our
network takes inputs of depth images and outputs the score for
each grasp candidate and the corresponding 2D representation
of the grasp approaching direction. We trained our network
with a combination of synthetic and real data sets for better
results. Finally, we conducted bin-picking experiments showing
how our 6-DoF grasp estimation performs better than 4-DoF
grasp estimation and takes less than a few seconds to compute.

Index Terms—bin-picking, grasp estimation, deep learning

I. INTRODUCTION

ONE of many laborious and repetitive tasks in the factory
that are still largely done manually by humans is the

grasping task. Grasping objects seems to be a trivial task for
humans, and yet it is a daunting task for robots. Robotic
grasping has been usually treated as a perception problem.
The problem requires the robot to recognize the target object
from a scene and determine how it should approach the object
while avoiding collisions.

Early studies on robotic grasping exploit the geometrical
shape and physical characteristics force closure [1], or grasp
wrench space metric [2]. These analytical methods work under
the assumption that the model and the pose of the object
are perfectly known. The technological advancement of 3D
measurement has made obtaining 3D point cloud data from a
real scene possible. Thanks to that, there have been many 3D
points registration algorithms proposed that match the obtained
3D point cloud data to the 3D model of the target object to
obtain the object’s pose such as Iterative Closest Point (ICP)
[3], Robust Point Matching [4], kernel correlation [5], and
coherent point drift [6]. However, not only these methods are
prone to error under uncertainty, an actual implementation of
these methods can be computationally slow during execution.
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With the development of hardware technology and the
affordable price of computing power, learning-based methods
have found their way into many robotics applications. The
learning-based methods, which rely heavily on the quantity
and the quality of the data set to train a model, are usually
more robust under uncertainty compared to analytical meth-
ods. Previous works suggest that learning-based methods for
robotic grasping have superior performance compared to the
analytical counterparts [7]–[10].

While robotic grasping for a single object can be considered
a solved problem, grasping an object among many objects that
are stacked at random poses inside a bin, or is often referred
to as the bin-picking task, is still largely an unsolved problem.
Bin-picking is still considered a challenging problem due to
the complexity of the scene compounded with the inherent
uncertainty in sensing.

In the last couple of years, remarkable progress has been
made by several groups to tackle the bin-picking problem
utilizing deep learning. Many of the previous works simplify
the problem to 4-DoF grasp or vertical grasp where the robot
can only approach the object from the vertical direction [11]–
[14]. This is mainly because obtaining the 6D pose of many
objects from a bin-picking scene becomes much more difficult
and involves an additional step such as 3D point cloud instance
segmentation [15], [16]. It has been shown that even with 4-
DoF grasp, the automated bin-picking system can have a good
performance [14], [17], [18]. However, 4-DoF grasp limits the
flexibility of the robot arm to deal with various objects. For
example, we have found that 4-DoF grasp does not perform
well when dealing with wide objects.

Several works tried to address this problem by utilizing
6D pose estimation algorithms. While these approaches can
certainly address the limitation of the 4-DoF grasp, they
usually involve a very large model of neural network which
of course requires an expensive computational resource. On
top of that, many of these works have only been tested with
simple-shaped objects which might not necessarily translate
to an industrial setting where the target objects often have a
complex shape.

In this paper, we explore a method to estimate 6-DoF
grasp from bin-picking scenes in an industrial setting using
a convolutional neural network (CNN) without having to
estimate the 6D pose of the target object. We gained inspiration
from the idea that the robot does not need to know exactly the
precise 6D pose of the target object to get a reasonably good
grasp. A rough estimate on how to approach the object is
often more than sufficient to grasp the target object. We use
what we call grasp approaching pose vector which determines
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from which direction the robot gripper should approach the
target object in Cartesian space. Our network evaluates the
grasp candidates represented as grasp rectangle [19] taken
from a single depth image and outputs the 2D projection of
grasp approaching pose vector at once. This 2D projection can
later be converted back to a 3D vector with the knowledge
of the camera intrinsic matrix. We tested our method on real
experiments, and we found out that our method can estimate
6D grasp sufficiently well with an average grasp success rate
of 85.74%. In short, the main contribution of this work is as
follows:
• A novel method to represent a 6-DoF grasp in the form

of 2D images, allowing fast 6-DoF grasp estimation.
• A network architecture that can evaluate both the robust-

ness of grasp candidates (the grasping score) and the 6D
grasping pose (the grasp approaching pose vector).

• Bin-Picking experiments evaluating the performance of
the proposed method using 4 types of industrial objects.

II. RELATED WORKS

The revolution of deep learning begins when LeCunn et
al. [20] and Krizhevsky et al. [21] generalized the back-
propagation algorithm for training multi-layer networks. Deep
learning has become popular in the robotics field due to its
efficacy in solving complex robotic tasks. Early efforts to
utilize deep learning on grasping problem is done by training
neural networks to detect which part of the object yields the
most stable grasps represented as grasp rectangles [7]–[10].
The result of the experiments showed that the deep learning-
based methods outperform classical grasp planning algorithms.
Since gathering manually-labeled data by humans is expensive,
Mahler et al. [22] showed that it is possible to train a network
using synthetic depth images and use the network on real depth
images.

Previously mentioned methods only examined grasping ob-
jects in isolation. Since then, many researchers have tried to
tackle the grasping problem under a cluttered scene where
many objects are stacked together, or often referred to as bin-
picking. In general, there are 2 types of bin-picking problems;
the first one is when only one type of object is stacked together
(homogeneous heap), and the second one is when several
types of objects are present in the bin (heterogeneous heap).
Grasping objects in the bin-picking problem can also be done
with either parallel-jaw grasp or suction grasp depending on
the types of objects.

There have been several methods introduced to formulate
the bin-picking problem including supervised learning with
simulated data [13], [14], [23], [24], unsupervised learning
where actual robots were trained to directly grasp objects
given the object scene from camera [25], [26], Partial Markov
Decision Process (PMODP) [11], and learning closed-loop
visual controller [12], [27]. These methods use a parallel-
jaw gripper and only consider 4-DoF grasp where the gripper
approaches the target object vertically. For many bin-picking
scenarios, 4-DoF parallel-jaw grasp is more than sufficient
especially if the target object is small. This is because even
though the target object is tilted, it won’t result in a huge

vertical gap between two contact points, hence the gripper
could still close and grasp the object. However, 4-DoF grasp
will likely be insufficient when dealing with wide objects as
we found from our experiment results.

Others consider using suction gripper [28], [29], or multi-
affordance grasp where both parallel-jaw gripper and suction
gripper are used [17], [30]–[32]. With a suction gripper, 6-
DoF grasp can be achieved without having to estimate the
6D pose of the target object. One can use the normal vector
taken from the contour of the target grasp to determine the
appropriate approaching direction of the gripper [17], [28]–
[30]. These methods were able to estimate the 6-DoF grasp
for suction grasp without having to estimate the 6D pose of the
target object. However, a suction grasp works best if the target
point has a smooth surface and might not be suitable for some
types of objects such as objects with small surfaces and rich
texture, or porous objects. In the case of multi-affordance grasp
in the aforementioned works, when suction grasp is deemed
unsuitable, the grasping task is still done with 4-DoF parallel-
jaw grasp [17], [31], [32].

A common way to achieve 6-DoF grasp is a two-step
method where at first object segmentation from the cluttered
scene is done to isolate the target object, and a pose estimation
algorithm is used. The pose estimation can be done by using
iterative point cloud (ICP) [33]–[35], a neural network to
regress to a quaternion describing the orientation of the target
object [32], point pair feature matching algorithm (PPF) [16],
[36], or voting-based matching scheme [37]. Once the 6D
pose of the target object is obtained, the grasp candidate can
be evaluated subsequently. While these methods have been
proven to work, but they require additional steps to segment
the objects and estimate the 6D pose of the object before
evaluating the grasp candidates. Additional steps would mean
additional computational time in the pipeline.

A full 6D pose information of the target object is not
necessary to achieve a reasonably good 6-DoF grasp. This
can be achieved by sampling 6-DoF grasp candidates from
point clouds and treat it as a classification problem [38], or
directly regressing to a 6-DoF grasp configuration from a point
cloud [39], [40]. However, these methods were tested using
household or warehouse objects which relatively have simpler
shape and texture, and some of them were not tested in a
bin-picking scene where the objects are stacked on top of
each other. Unlike household objects, the objects found in an
industrial setting usually have more complex shapes and are
harder to grasp by robot gripper. We have yet to find a 6-DoF
grasp estimation method that is tested in an industrial setting
where the bin-picking scene is heavily cluttered.

In this work, we focus on the problem of the 6-DoF
parallel-jaw grasp for bin-picking in an industrial setting. The
remainder of this paper is structured as follows. In section III,
the overview of the whole system and the representation of
grasp candidates will be discussed. Section IV describes the
architecture of the network that we used, the training scheme,
and training data set generation. Section V presents the ex-
periment results we conducted and the discussion about the
results. Finally, section VI summarizes the conclusion of this
work and discuss the possible future work for improvements.
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Fig. 1: Overview of the proposed method.

III. METHODS

A. System Overview

In this work, we consider the case where the heap inside
the bin is homogeneous, or in another word, it only contains
one type of object. The overview of the proposed method is
shown in Fig. 1. Depth images of the bin-picking scene are
obtained with a 3D sensor. We extract edges with Canny edge
detection [41] and compute normal vectors of each pixel of
the edges from the depth images to sample grasp candidates.
A valid grasp candidate on 2D images is defined as a pair
of pixels that belong to the outer edges of the target object.
The grasp sampling is done by taking many pairs of pixels
that belong to the outer edges and pruning the ones outside
the gripper width’s limit range or the ones without sufficient
condition for force closure, mathematically described by

wmin < ‖c2 − c1‖ < wmax, (1)
(c2 − c1) · n2 < cos(arctan(µ)), (2)
(c1 − c2) · n1 < cos(arctan(µ)), (3)

where, c1 and c2 are the pixel coordinates of contact points,
wmax and wmin are the maximum and minimum width of
the gripper on 2D pixel coordinate system, n1 and n2 are
the surface normal vectors of the contact points, and µ is the
friction coefficient. The eq. (2) and eq. (3) not only ensures
that a pair of pixels satisfy the force closure condition, but it
also guarantees that a pair of pixels represent a tangible grasp
candidate (antipodal grasp candidates) rather than an empty
space created by two adjacent objects. The visualization of
the sampled grasp candidates from the edges is shown in Fig
.2

We represent each pair of pixels that qualifies to be a
grasp candidate with grasp rectangle [19]. The depth image is
then translated, rotated, and cropped creating individual grasp
images. In each grasp image, the rectangle is at the center of

the image, and its orientation is aligned with the horizontal
axis, making the learning and inference process easier [22].
The images are then fed to the CNN, and the CNN will
output the grasping score and the 2D projection of the grasp
approaching pose vector. The grasping score, in the range of
0 to 1, represents how robust a particular grasp candidate
is. The 2D projection of the grasp approaching pose vector
is later converted to a 3D vector and used to determine the
approaching direction of the gripper. The grasp candidate with
the highest grasping score is chosen, and a grasping action can
be executed.

Fig. 2: A visualization of sampled grasp candidates. The black
lines represent the extracted edges from the scene and the blue
lines represent sampled grasp candidates. The grasp candidates
are sampled by taking many pairs of pixels that belong to the
outer edges of target objects and pruning the ones outside
the gripper width’s limit range or the ones without sufficient
condition for force closure.
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Fig. 3: A Grasp rectangle as a representation of a grasp
candidate.

B. Grasp Representation

We use the grasp rectangle, which was first introduced by
Jiang et al. [19], to represent a grasp candidate. A Grasp
rectangle on a depth image encodes 6 variables about the
grasp candidate. Those are the 3D position of the center of
the grasp, x, y, and z, the rotation around the vertical axis ψ,
the gripper width on 2D image w, and the finger’s dimension
d, as shown in Fig. 3. Since we only consider a homogeneous
heap inside the bin, the variables w and d are set to be constant.
With the grasp rectangle, we have information about 4 out of
a total 6-DoF of the grasp candidate in the Cartesian space
which allows the robot to grasp the target object only from
the vertical direction.

We use what we call grasp approaching pose vector v that
determines the approaching direction of the gripper to the
center of the grasp in the target object. This vector starts from
the center of the grasp and points to the opposite direction
of the grasp approaching direction as shown in Fig. 4. This
vector should always be perpendicular to the grasping stroke
direction, and the magnitude of the vector is set to be constant.
Provided the knowledge of the object’s pose in the bin, we can
determine the grasp approaching pose vector in three following
steps. First, we sample many vectors along the perpendicular
plane to the grasp stroking direction. We then prune the vectors
correspond to the grasping action that results in a collision with
the surrounding object. Finally, we take the one that minimizes
the dot product with the gravitational force since the vector is
in the opposite direction of the grasp approaching direction.

Fig. 4: An illustration of a grasp approaching pose vector that
starts from the center of the grasp and points to the opposite
direction of the approaching direction in Cartesian space.

Fig. 5: (Top) Predicted pixel location representing the 2D pro-
jection of a grasp approaching pose vector by CNN. (Bottom)
Visualized 2D projection of a grasp approaching pose vector.

However, since we do not know the object’s 6D pose in
the bin, we train the CNN to predict the 2D projection of the
grasp approaching pose vector represented as a dot as shown
in Fig. 5. The location of the dot relative to the center of the
rectangle is the 2D projection of the grasp approaching pose
vector relative to the center of the grasp. With the knowledge
of the camera intrinsic matrix, the 2D vector can be converted
to 3D vector. Once the 3D vector is obtained, we can obtain
the Euler rotation angles by treating the vector as if it has been
rotated from an initial vector that is pointing to the vertical
axis. We extract the Euler angles from the equations given by,

vinit =

 0
0
‖v‖

 , (4)

v = Z(ψ)Y (θ)X(φ)vinit, (5)

Z(ψ)−1v = Y (θ)X(φ)vinit, (6)

v′ = Y (θ)X(φ)vinit, (7)

where v is the grasp approaching pose vector, Z(ψ), Y (θ),
and X(φ) are the rotation matrices, ψ, θ, and φ are the Euler
angles around z, y, and x-axis respectively. The value of ψ
can be obtained from the orientation of the grasp rectangle.
We can analyze eq. 6 element by element, and the value of θ
and φ are obtained by,

φ =
1

‖v‖
arcsin (−v′2), (8)

θ =
1

‖v‖
arcsin

v′1
cosφ

, (9)
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Fig. 6: Architecture of the proposed network.

where v′1 and v′2 are the first and the second entry element of
the vector v′.

IV. LEARNING 6-DOF GRASP ESTIMATION

A. Network Architecture

The proposed network architecture is shown in Fig. 6. As
mentioned before, the network takes inputs of individual grasp
image and outputs the grasping score and the 2D projection of
the grasp approaching pose vector. The network is divided into
three parts: feature extractor, grasp pose estimator and grasp
quality estimator. The feature extractor consists of 4 stages
of convolution processes where each stage is comprised of 2
units of residual blocks [42]. The grasp pose estimator consists
of 3 stages of deconvolution processes, and each stage is also
comprised of 2 units of residual blocks.

Inspired from the architecture of U-Net [43], the output of
the first three stages of convolution processes in the feature
extractor part are forwarded and concatenated to the input of
corresponding deconvolution processes with the same size as
shown in Fig. 6. The last part is the grasp quality estimator
which consists of 2 dense layers with 512 and 256 nodes each.
Instead of using max-pooling with fixed sliding window size,
we use global max-pooling for the input of the first dense layer
in the grasp quality estimator to make sure that the network
can take an arbitrary size of input images.

We treat the output layer of the grasp pose estimator as a
pixel-wise binary classification problem with the same size as
the input images. The bright part, shown as a white dot in
the picture, is the estimated location of the 2D projection of
the grasp approaching pose vector relative to the center of the
grasp candidate. On the other hand, the output layer of the
grasp quality estimator is treated as a normal classification
problem which outputs a number between 0 to 1 where the

higher the number is, the better the grasp quality is. The
activation function of all hidden layers is a ReLu unit function
[44], while the activation function of the last output layers of
the grasp pose estimator and the grasp quality estimates is a
sigmoid function.

B. Training Process

We divide the training process into two sessions as shown
in Fig. 7. In the first session, we train the feature extractor
and the grasp quality estimator. In this process, the network
is trained to classify the individual grasp images into feasible
grasp (positive class) and unfeasible grasp (negative class).
Since there is a class imbalance between the feasible and
unfeasible grasp in the training data set, we use a focal loss
function which was introduced by Lin et al. [45]. Focal loss
introduces two hyper-parameters, α, and γ. We chose γ = 2 as
what is mentioned in the paper, and α = 0.75. We trained the
network with 30 epochs, batch size equal to 2, SGD optimizer,
and the learning rate is equal to 0.001. The first training session
took 18 hours in total with NVIDIA GPU GTX 1080.

In the second session, we reused the weight of the feature
extractor part, froze the weight, and combine it with the grasp
pose estimator. In other words, we only trained the grasp
pose estimator part in this session. As mentioned previously,
we treat this problem as a pixel-wise binary classification.
Therefore, the network is trained to predict which pixels
belong to the positive class. In the labeled training data set,
out of all pixels in the output layers, only one pixel belongs to
the positive class, indicating the location of the 2D projection
of the grasp approaching pose vector. Hence, there is a huge
class imbalance in this problem. To tackle this problem, aside
from using the focal loss function, we set the bias of the last
layer so that the initial output of the networks are all zero-
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Fig. 7: Two steps of the training process.

valued pixels. We set the value of γ = 2, and α = 0.75. We
decided to scale up the loss function by a factor of 1000 since
the original loss function is too small and the training process
did not go well. We trained the network with 40 epochs, batch
size equal to 1, SGD optimizer, and the learning rate is equal
to 0.001. The Second training session took 23 hours in total
with Nvidia GPU GTX 1080.

C. Training Data Set Collection

We created two separate data sets for each training session.
For the first training session, we gather a data set that consists
of 24,000 manually annotated individual grasp images from
60 real bin-picking scenes. We complement it with 46,000
synthetic individual grasp images from computer simulation.
In labeling the synthetic individual grasp images, we take
into account several factors that determine the feasibility of a
grasp candidate, including the occlusion rate from the camera
perspective, collision check between the surrounding objects,
and grasp wrench space metrics [2].

For the second training session, we created 30,000 synthetic
individual grasp images from computer simulation and its cor-
responding 2D projection of the grasp approaching pose vec-
tor. The second data set only contains synthetic grasp images
of feasible grasp candidates. For one, the grasp approaching
pose vector is only meaningful if the grasp candidate itself is
feasible to execute. Secondly, the creation of the 2D projection
of the grasp approaching pose vector requires information
about the object’s 6D pose in the bin, which will be explained
shortly. Since obtaining the object’s 6D pose from an actual
scene is rather challenging, we decided to only use synthetic
data instead.

To create the 2D projection of the grasp approaching pose
vector, we first sample antipodal grasp candidate on a 3D
object data in its local coordinate, sample many vectors on
the plane perpendicular to the grasp stroking direction for
each grasp candidate, and prune the one that collides with
the object itself in the object’s local coordinate as what is
done by Wan et al. [46]. When we perform a simulation of

stacking objects inside a bin, we transform all the sampled
vectors for each grasp candidate from the local coordinate to
the global coordinate depending on the object’s pose inside
the bin and prune again all the grasp approaching pose vector
that results in a collision with the surrounding object. Out of
all the remaining vectors for each grasp candidate, we choose
the one that minimizes the dot product with the gravitational
force, and we project it into the pixel coordinate from the
camera perspective. We then put label 1 to the location of the
projection of the vector and 0 for the rest of the pixels.

V. RESULTS AND DISCUSSION

A. Experiments

In this section, we evaluate the proposed method by con-
ducting real bin-picking experiments. The experimental setup
of the experiment is shown in Fig.8. We used a 6-DoF
Denso robotic arm as the manipulator, a pneumatic parallel
gripper, and an Ensenso N-30 depth camera with 1280 x 1024
resolution for the 3D sensor. As mentioned previously, we
only focus on bin-picking with a homogeneous heap where
only one type of object is present inside the bin. So, we
evaluated our method with 4 types of objects as shown in
Fig.9 separately. We stacked around 20-25 objects inside a
box depending on the object’s size. For each object, we
performed both 4-DoF and 6-DoF bin-picking experiments
to create a baseline comparison of how well our proposed
method performs. The 4-DoF bin-picking experiments were
based on the method proposed by [18]. For each experiment,
we performed around 79 to 106 grasp attempts, and we
classify each grasp attempt into successful attempts and failed
attempts. A successful grasp attempt is an attempt when the

Fig. 8: Experimental setup for bin-picking experiments.
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(a) Object A. (b) Object B

(c) Object C (d) Object D

Fig. 9: Objects used to conduct bin-picking experiments.

robot gripper can successfully grasp the object with a grasping
pose close to the ideal grasping pose and remove it from
the box. Otherwise, we considered it as a failed attempt. The
success rate of each experiment is simply the ratio between
successful attempts and the total attempts that the robot made.

The computational time for each grasp attempt largely
depends on the number of grasp candidates sampled from the
scene. We took 50 samples each time to ensure that there is at
least one feasible grasp candidate. It took on average around
5 seconds to compute the inference with NVIDIA GPU GTX
1080. The bottleneck computation during the inference process
is the memory of the GPU which did not allow us to use batch
size more than 1.We later also tested our model with NVIDIA
Tesla K-80 and the computational time can be reduced to 2.6
seconds on average by doubling the batch size.

There are several cases where the robot could not find
any feasible grasp candidates from the scene. Usually, this
happens because the objects are closely located to one and
another leading to a collision if a grasp attempt is performed.
This problem can be mitigated by simply shaking the stack
to change the configuration of the objects. During our experi-
ment, this was done manually. However, to fully automate this
process, an additional system can be installed to shake the box
whenever no feasible grasp candidate is found. The result of
the experiments is summarised in table I and table II, and
several examples of estimated grasps with its corresponding
grasp attempt is shown in Fig.10 and Fig.11.

B. Discussion
From our experiments summarized in table I and table II,

we found that our proposed method performed reasonably well

TABLE I: Experiment results of bin-picking with 4-DoF grasp
estimation.

4-DoF Grasp
Estimation

Successful
Attempts

Failed
Attempts

Total
Attempts

Success
Rate

Object A 60 23 83 72.29%
Object B 43 37 80 53.75%
Object C 79 19 98 80.61%
Object D 49 39 88 55.68%

TABLE II: Experiment results of bin-picking with 6-DoF grasp
estimation.

6-DoF Grasp
Estimation

Successful
Attempts

Failed
Attempts

Total
Attempts

Success
Rate

Object A 66 10 76 86.84%
Object B 95 11 106 89.62%
Object C 80 15 95 84.21%
Object D 66 10 76 86.84%

in all experiments with a grasp success rate ranging from
84.21% to 89.62%. As a comparison, without the 6-DoF grasp
estimation, the grasp performance yields subpar grasp success
rates especially for object B and object D. The considerable
performance degradation of 4-DoF grasp estimation on object
B and object D can be explained intuitively. Both objects have
a wide shape which means a slight tilt of the orientation of
the target object results in a bigger vertical gap between both
grasp contact points as illustrated in Fig.12. When the robot
arm tries to reach the grasp candidate vertically, it tends to
fail to grasp the target object. This problem does not become
a huge concern with small object types since a slight tilt
of the orientation does not result in a huge vertical gap.
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(a) Object A.

(b) Object B

(c) Object C

(d) Object D

Fig. 10: Examples of success attempts. The estimated best grasp candidates with its 2D projection of approaching pose vector
on depth images (Top row). The corresponding success grasp attempts (Bottom row).
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(a) Object A.

(b) Object B

(c) Object C

(d) Object D

Fig. 11: Examples of failed attempts. The estimated best grasp candidates with its 2D projection of approaching pose vector
on depth images (Top row). The corresponding failed grasp attempt (Bottom row).
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TABLE III: Comparison with other 6-DoF bin-picking methods.

[28] [29] [31] [39] [38] Ours

Type of Training Data Synthetic Synthetic Real Real Real Synthetic + Real

Input Data Depth Image Depth Image RGB-D Image Point Cloud Point Cloud Depth Image

Type of Target Objects Adversarial Textureles/Planar Household Household Household Industrial

Gripper Type Suction Suction Suction Parallel Parallel Parallel

Average Inference Time (s) - 0.034 0.06 0.0126 - 2.6

Average Success Rate 81% 97.5% 94.55% 77.10% 77.76% 86.88%

Fig. 12: An illustration of how 4-DoF grasp on wide object
will likely fail in a picking scenario.

There is a discrepancy between results shown in I and our
previous results in [18]. The discrepancy can be explained
by the way how the experiments were set. In this paper, we
placed our objects inside a bin with a convex base, while in
[18], experiments were conducted on a planar surface. Placing
objects in a box on a convex base made them concentrated in
the middle with higher stacks which leads to more variation
on orientation. In contrast, placing objects on a planar surface
tends to make many objects at a stable pose, thus making them
easier to grasp.

Failed grasp attempts in our method can be attributed to
several factors such as inaccurate grasp pose estimation or
grasp scoring and collision with surrounding objects. Inac-
curate grasp pose estimation makes the most of failed grasp
attempts which can be seen from figure 11. Sometimes, the
location of the red dot which represents the 2D projection
of the grasp approaching vector drifted too far from the
center of the grasp rectangles, resulting in excessively tilted
grasp approaching pose vector. This phenomenon is even more
pronounce in wide objects because of the reason mentioned in
the above paragraph. The inaccurate prediction of grasp pose
estimator is mainly because the grasp pose estimator was only
trained using synthetic depth images which do not have the
same quality as real depth images. Utilizing real depth images
to train the grasp pose estimator might not be a practical way
since we need to know the pose of the target object to create
the label for the training data. A possible extension of our work
is to incorporate a Generative Adversarial Network (GAN)
which is trained to augment the synthetic depth images to
look closer to real depth images. In this way, we can gather
the training data cheaply while improving the performance of
the grasp pose estimator on a real bin-picking scene.

Our method is not aimed to compete with 6D pose esti-
mation algorithms since the goal of our method is not to
estimate the 6D pose of the object, but to estimate how to
approach the target object with 6-DoF grasp. We aimed to
show that 6-DoF grasp can be achieved even without having
to estimate the 6D pose of the object. With 6D pose estimation
algorithms, the estimated grasp might be more precise, but
grasp planning requires more computational complexity at the
same time. Our method trades precision with simplicity, and
for most of the time, the estimated 6-DoF grasp is more than
sufficient enough to grasp the target object as shown from our
experiment results. We instead try to compare our methods
with other bin-picking methods that employ 6-DoF grasp in
their experiments. The comparison is summarized in table III.

From table III, it can be immediately noticed that methods
that utilized suction grippers have high average grasp success
rate than methods that utilized parallel grippers. As mentioned
in Section 2, suctions gripper works best if the target objects
have a large and smooth surface that makes suction grasp
possible. The method proposed by [29] is only tested with
textureless or planar objects, while the method proposed by
[33] is tested with household objects that have smooth and
approximately planar surface provided by Amazon Robotics
Challenge. In [28], their method is tested with several kinds
of objects. Their method achieves a grasp success rate of 97%
when tested against prismatic objects. However, when their
method is tested against adversarial objects, objects with few
available suction-grasp points, the grasp success rate drops
to 81% as shown in table III. We believe that the objects
we used during our experiments would qualify as adversarial
objects considering how uneven the surface of the objects is.
Compared to other methods that utilized parallel gripper [38],
[39], our method has better grasp success rate, albeit with a
longer inference time. However, we believe that we can further
reduce the inference time of our method by increasing the
batch size during the inference process by using GPUs with
higher memory capacity.

VI. CONCLUSION

This paper proposed a new deep learning-based method to
tackle 6-DoF grasp estimation without having to estimate the
6D pose of the target object. Our method utilized a novel
way to represent 6-DoF grasps utilizing what we call grasp
approaching pose vector which determine the approaching
direction of the gripper to the target object. A convolutional
neural network is trained to evaluate the robustness of grasp
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candidates and estimate the 2D projection of the grasp ap-
proaching pose vector. With the knowledge of the camera
intrinsic matrix, the 2D projection can be converted to 3D
vector which encodes information about 6-DoF grasps. Our
experiment results show that the proposed method performed
reasonably well with grasp success rate ranging from 84.21%
to 89.62%. Most failed grasp attempts can be attributed to
inaccurate grasping pose estimation due to the fact that the
grasp pose estimator part is only trained with synthetic depth
images. A possible future work to improve the performance of
our method is to incorporate a Generative Adversarial Network
(GAN) trained to augment synthetic depth images to look
closer to real depth images.
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